Skip to main content Link Menu Expand (external link) Document Search Copy Copied

A Primer on Induction

Induction is an approach to proving a statement about a pattern $P$ or law involving an infinite number of cases
(one for some input numner of elements): $ P(0), P(1), \dots , P(k), P(k+1), \dots $
This is done in three steps:

  1. The rule works for a base case, usually $ P(0) $, or $ P(1) $
  2. Asume the rule is valid for some intermediate case $ P(k)$
  3. Prove it works for the next case: $ P(k+1) $

Example

Prove that $1+2+3 \dots + n = \frac{n(n+1)}{2}$

  1. Base case $n=1$: $ 1 = \frac{k(k+1)}{2} = \frac{1(1+1)}{2} = \frac{(2)}{2} =1 \qquad \checkmark$
  2. Asume this is true for some $n=k$: $ 1+2+\dots+k = \frac{k(k+1)}{2} \qquad \checkmark$ (OK, sure)
  3. Inductive step $\rightarrow $ show that if step (2) holds, then it holds for $n=k+1$:
    \(\begin{alignat}{2} \text{if } 1+2+\dots+k &= \frac{k(k+1)}{2}\text{, then} \\ 1+2+\dots+k+(k+1) &= \frac{k(k+1)}{2} + (k+1) \\ &= \frac{k(k+1) + 2(k+1)}{2}\\ &= \frac{(k+1)(k+2)}{2}\\ &= \frac{(k+1)((k+1)+1)}{2} \qquad \square \end{alignat}\)

Read the following Guide to Induction for a deeper dive into the steps.

Universal Turing Machines and the Halting Problem